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The Most Fundamental Marketing Concept: STP

A basic belief in Marketing is to deliver the right products, to the
right people, in the right way.

If that iIs done successfully, one will be able to attract a greater price
premium and one will be able to retain customer better.
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The Most Fundamental Marketing Concept: STP

A basic belief in Marketing is to deliver the right products, to the
right people, in the right way.

! I

S: Segmentation  P: Positioning T: Targeting

If that is done successfully, one will be able to attract a greater price
premium and one will be able to retain customer better.
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56 “Market segmentation 1s the subdividing of a market into
distinct subsets, where any subset may conceivably be
selected as a marketing target to be reached within a distinct

marketing mix.”

— PHIL KOTLER
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Implementing Segmentation Steps

Market Segmentation

1. Identify bases for segmenting the market
2. Develop profiles or segments

3. Relate to descriptors for reachability
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Implementing Segmentation Steps

Market Segmentation

1. Identify bases for segmenting the market
2. Develop profiles or segments
3. Relate to descriptors for reachability

Target Marketing

4. Develop measures of segment attractiveness
5. Select the target segments

Product Positioning

6. Develop product positioning for each target segment

7. Develop marketing mix for each target segment
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Major Segmentation Variables
 Demographics

o (Geography

* Purchasing Approaches

* Personal Characteristics (Psychographics)
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Demographic Segmentation

Favorite E-Commerce Categories by Gender
Men Women

Category Percent Category Percent
Computers 76% Books 64%
CDs 60% CDs 60%
Books 59% Computers 57%
Small consumer electronics 44% Health & Beauty 42%
Videos 38% Toys 41%
Air Travel 34% Women's Clothing 39%
Magazines 31% Children's clothing 31%
Men's clothing 29% Videos 28%
Toys 29% Magazines 27%
Hotel reservations 26% Small consumer electronics 26%
Women's clothing 21% Air travel 24%
Health & beauty 19% Flowers 21%
Sporting goods 19% Men's clothing 20%
Source: Ernst & Young
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Demographic Segmentation

Favorite E-=Commerce Categories by Gender
Men Women
Category Percent Category Percent
[Computers | 76%  ||[Books [ 64% | |

CDs 60% CDs 60%
Books 59% Computers 57%
Small consumer clectronics 44% Hcalth & Beauty 42%
Vidcos 38% Toys 41%
Air Travel 34% Women's Clothing 39%
Magazines 31% Children's clothing 31%
Men's clothing 29% Videos 28%
Toys 29% Magazines 27%
Hotel reservations 26% Small consumer clectronics 26%
Women's clothing 21% Air travel 24%
Health & beauty 19% Flowers 21%
Sporting goods 19% Men's clothing 20%
Source: Ernst & Young
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Purchasing Approach

e Online
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Purchasing Approach

e Online

 Brick and Mortar
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Purchasing Approach

e Online
 Brick and Mortar
e Mall
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Purchasing Approach

Online

Brick and Mortar
Mail

Phone
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Psychographics

Definition: the use of psychological, sociological, and
anthropological factors combined with demographic information to
identify market segments with a propensity to favor some product
groups or characteristics over another due to the unigque
combination of these factors.

=  DEMOGRAPHICS
PSYCHOGRAPHIC PROFILES

This is the basis for segmentation that conceptually marketers agree upon.

wWharton



Taxonomy at the Pump
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Road Warriors: GenerallyTrue Blues: Usually ~ Generation F3: (for fuel, Homebodies: Usually ~ Price Shoppers:
higher income middle-agedmen and women with ~ food and fast): Upwardly housewives who shuttle ~ Generally aren’t loyal to

men who drive 25,000 to moderate to high mobile men and women - their children around either a brand or a
50,000 miles a year...buy incomes who are loyal half under 25 years of during the day and use particular station, and
premium with a credit  to a brand and age-who are constantly onwhatever gasoline rarely buy the premium
card...purchase sometimes to a the go...drive alotand  station is based in town line...frequently on tight
sandwiches and drinks ~ particular snack heavily from the  or along their route of ~ budgets...efforts to woo
from the convenience station..frequently buy ~ convenience store travel. them have been the base
store...will sometimes premium gasoline and of marketing strategies
wash their cars at the pay in cash for years.

carwash.

16% of buyers 16% of buyers 27% of buyers 21% of buyers 20% of buyers

Source: WSJ, Jan. 30, 1995
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&/ UNI1TED

Road Warrior Pragmatic Reluctant DI1Y Leisure Just For Fun Price Driven
Business Business Opportunist Leisure Occasionalist
Traveler Traveler Traveler
Business vs. Very heavy Moderately high | Moderate Frequent Frequent Occasional
Personal business business business pleasure pleasure pleasure
traveler traveler traveler
Travel Affinity Travel so much Serves its Would rather Enjoy it, Pleasure travel Enjoy it, but
on business, purpose—Enjoy avoid it if especially if enthusiast sometimes
appetite for it somewhat, possible they find a good nervous
leisure not as not bothered by deal
strong as others | it
FF Program Huge Important— Don’t care at all Miles, rewards, Miles are Barely aware
influencer— more for miles bonuses are somewhat
mostly for than status very important important

recognition/sta
tus

Price Sensitivity | Least Price Corporate Corporate Actively shop Price sensitive, Very price
sensitive driven—fairly crackdown for best fares— but sometimes sensitive
price sensitive likely to use more driven by
efares, discount | desire to travel
websites
Service Expect better Not very Don’t expect it Service Service is Prefer low
Demands service due to demanding important, but important, but cost/no frills

higher status

good deal is
more critical

might be cost-
constrained

International
Travel

High amount of
Int’l Business
travel

Some int’l
business

Virtually none

Occasional int’l
pleasure

Some int’l
pleasure

Virtually none




PRIZM Segmentation

nielsen | MyBestSegments ciient Login 1@ @ ©

Home ZIP Code Look-up Segment Details Learn More - Consumer Activation Contact Us

UNCOVER rich and comprehensive Contact us
insights about consumer benhaviors,

“"
Questions about how Nielsen
Segmentation can find customers to grow
your business?

Shopping patterns and media preferences

Email or call: 800.234 5973

Nielsen PRIZM

Overview The Power of PRIZM
Savvy marketers' are challenged with understanding the consumer. PRIZM® is the industry-leading lifestyle
segmentation system that yields rich and comprehensive consumer insights to help you reveal your customer's
preferences. PRIZM combines demographic, consumer behavior, and geographic data to help marketers identify,
understand and reach their customers and prospects.

+ What is PRIZM?

FRIZM defines every U.S. household in terms of 66 demographically and behaviorally distinct types, or "segments,” to
help marketers discern those consumers' likes, dislikes, lifestyles and purchase behaviors. Used by thousands of
marketers within Fortune 500 companies, PRIZM provides the “common language™ for marketing in an increasingly
diverse and complex American marketplace.

PRIZM enables marketers to create a complete portrait of their customers by answering these imporant questions:

« Who are my best customers?

« What are my best customers like?

» ‘Where can | find my best customers?

« How can | reach my best customers?

Features & Benefits

With PRIZIM segmentation marketers can better understand their customers and prospects, and reach them with
tailored messages and products designed just for them. Captured by catchy nicknames, images and behavioral
snapshots that bring the segment to life for marketers, PRIZM segments are memorable and summarize complex
consumer profiles in a way that is intuitive and easy to communicate




PRIZM Segmentation

niclsen | MyBestSegments
Home ZIP Code Look-up Segment Details Learn More -

INCOVER rich and comprehensive
inSights about consumer benhaviors,

Shopping patterns and media pref

Nielsen PRIZM

Overview

Savvy marketers' are challenged with understanding the consumer. PRIZM® is the industry-leading lifestyle
segmentation system that yields rich and comprehensive consumer insights to help you reveal your customer's
preferences. PRIZM combines demographic, consumer behavior, and geographic data to help marketers identify,
understand and reach their customers and prospects.

FRIZM defines every U.S. household in terms of 66 demographically and behaviorally distinct types, or "segments,” to
help marketers discern those consumers' likes, dislikes, lifestyles and purchase behaviors. Used by thousands of
marketers within Fortune 500 companies, PRIZM provides the “common language™ for marketing in an increasingly
diverse and complex American marketplace.

PRIZM enables marketers to create a complete portrait of their customers by answering these imporant questions:

Who are my best customers?

What are my best customers like?

Where can | find my best customers?

How can | reach my best customers?

Features & Benefits

With PRIZIM segmentation marketers can better understand their customers and prospects, and reach them with

tailored messages and products designed just for them. Captured by catchy nicknames, images and behavioral

snapshots that bring the segment to life for marketers, PRIZM segments are memorable and summarize complex
consumer profiles in a way that is intuitive and easy to communicate

Consumer Activation

Contact us

Questions about how Nielse)
Segmentation can find custy

your business?

Email or call: 800.234 5973

The Power of PRIZM

+ What is PRIZM?
PRIZM Lifestage Groups
PRIZM Social Groups

Principal Drivers of PRIZM

Explore PRIZM Segments

Using Segmentation

Resources

PRIZM interactive tutorial
Sell Sheet: PRIZM
Sell Sheet: PRIZM Digital

Sell Sheet: PRIZM Digital Mobi

Case Study: Automotive Manuf:

Consumer Who Want to Buy

Report: Boomers | Marketing's

Generation
Report: Affluence in America

Contact Us

HIGH
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U1

U1 Urban Uptown

04 Young Digerati

07 Maney & Brains

16 Bohemian Mix

26 The Cosmopolitans
29 American Dreams

U2

U2 mMidtown Mix

31 Urban Achievers
40 Close-In Couples
54 Multi-Culti Maosaic

S1

S1 Elite Suburbs

01 Upper Crust

02 Blue Blood Estates
03 Movers & Shakers
06 Winner's Circle

S2
S2 The Affluentials

08 Executive Suites
14 New Empty Nests
15 Pools & Patios

17 Beltway Boomers
18 Kids & Cul-de-Sacs
19 Home Sweet Home

S3
S3 Middieburbs

21 Gray Power
22 Young Influentials
30 Suburban Sprawl

ization

C1

C1 2nd City Society

10 Second City Elite
12 Brite Lites, Li"l City
13 Upward Bound

Cc2

C2 City Centers

24 Up-and-Comers
27 Middleburg Managers
34 White Picket Fences
35 Boomtown Singles
41 Sunset City Blues

™

T1 Landed Gentry
05 Country Squires

09 Big Fish, Small Pond
11 God's Country

20 Fast-Track Families
25 Country Casuals

T2

T2 Country Comfort

23 Greenbelt Sports
28 Traditional Times
32 New Homesteaders




Product Line Segmentation

A

BANANA REPUBLIC

Income || \ I]

Shared values:
Urban, fashionable

Age, aspirations
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How to Select Segments to Target

Market Attraction

* |dentify bases for segmenting the market
 Develop profiles or segments

* Relate to descriptors for reachability
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Market Attraction

* |dentify bases for segmenting the market
« Develop profiles or segments
* Relate to descriptors for reachability

Company Fit

 Develop measures of segment attractiveness

o Select the target segments
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How to Select Segments to Target

Market Attraction

* |dentify bases for segmenting the market
« Develop profiles or segments
* Relate to descriptors for reachability

Company Fit

 Develop measures of segment attractiveness
o Select the target segments

Competitive Environment

 Develop product positioning for each target segment

« Develop marketing mix for each target segment

wWharton
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How do | Actually Segment the Market? Intro to Cluster Analysis

o Cluster analysis seeks to group objects such that segments are created
that are as homogenous as possible given the variables
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How do | Actually Segment the Market? Intro to Cluster Analysis
o Cluster analysis seeks to group objects such that segments are created
that are as homogenous as possible given the variables

« Cluster analysis works on the principle of maximizing the between-cluster
variance while minimizing the within cluster variance
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How do | Actually Segment the Market? Intro to Cluster Analysis
o Cluster analysis seeks to group objects such that segments are created
that are as homogenous as possible given the variables

« Cluster analysis works on the principle of maximizing the between-cluster
variance while minimizing the within cluster variance

* Every object is allocated to one cluster

wWharton



lllustration iIn One Dimension

Between group variance

Within group variance

r i )
between group variance
Max < -

Vpossible configurations . Within grOUp Variance )
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Basic Idea Behind Clustering
Which variables?

How do | compute the
< >  distance between any
two objects?

Objects

Assignment of
objects to groups
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K-Means Clustering

 K-means clustering is the most commonly used clustering
technique.
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K-Means Clustering

 K-means clustering is the most commonly used clustering
technique.

o Itis an iterative technique that seeks to allocate each
observation to the cluster that is located closest to it.
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How Many Clusters?

Managers typically decide based on intended action:
« How many clusters are feasible to target?
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« How many clusters are feasible to target?

e Are each of the clusters of sufficient size to be considered a
market segment?

wWharton



How Many Clusters?

Managers typically decide based on intended action:

« How many clusters are feasible to target?

e Are each of the clusters of sufficient size to be considered a
market segment?

 |Is there sufficient differentiation between the segments?

wWharton
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Example — Conjoint Analysis and Segmentation

Recall example from conjoint analysis
e Laptop survey with 20 respondents
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Example — Conjoint Analysis and Segmentation

Recall example from conjoint analysis

o Laptop survey with 20 respondents

 Each respondents may value different aspects of the laptop

 One can assess the relative importance of each attribute for
each person

wWharton



% Relative Importance

Customer Brand Memory Hard Drive Speed Price

1 17 16 11 26 30
2 30 17 13 28 11
3 8 24 22 17 29
4 24 26 6 28 15
5 15 33 10 24 18
6 9 38 7 30 15
7 16 25 6 34 18
8 9 37 8 24 22
9 25 30 4 28 13
10 11 23 16 32 18
11 21 24 12 29 14
12 24 20 19 23 14
13 16 27 6 35 16
14 10 26 28 24 13
15 14 34 7 29 16
16 15 35 11 24 16
17 20 27 16 24 13
18 4 23 31 23 20
19 16 26 9 31 18
20 19 30 16 21 16

wWharton



Example — Conjoint Analysis and Segmentation

e Input to k-Means segmentation
« All 5 attributes
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Example — Conjoint Analysis and Segmentation

e Input to k-Means segmentation
« All 5 attributes

e Qutput — Number of segments

 Managerial intuition: These are customers that make similar
tradeoffs
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Conjoint Analysis Partworths
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Segmentation - Profiling

Segment 1 Segment 2

Product
Benefits

Product
Benefits

Segment 1 Segment 2

 Age « Age

« Gender e Gender
e Income Demographics e Income
e Activities and e Activities

Psychographics

wWharton




Conclusions

e Segmentation is an important tool.
e Itis essential for proper targeting and positioning.

 There Is a statistical technique, cluster analysis, that can aid with
segmentation.

 More importantly, though, as managers we have to think carefully
about how many segments my organization can handle.

wWharton Name of Initiative



Wharton

IIIIIIIII f PENNSYLVANIA

w

ONLINE

Market Segmentation, Social Media and
Viral Marketing

Social Media and Data



User Generated Content
e Product reviews — Yelp, TripAdvisor, Rotten Tomato
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* Blogs

e Social Media — Facebook, Twitter
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User Generated Content
e Product reviews — Yelp, TripAdvisor, Rotten Tomato

* Blogs
e Social Media — Facebook, Twitter
e YouTube Videos
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User Generated Content
e Product reviews — Yelp, TripAdvisor, Rotten Tomato

* Blogs
e Social Media — Facebook, Twitter
e YouTube Videos

e Big picture — is unstructured

w Wharton Marketing Analytics



Customer Experience Management
s X
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Example 1: Forecasting Movie Demand
 What is the content of pre-release buzz
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Example 1: Forecasting Movie Demand
 What is the content of pre-release buzz

 Can pre-release buzz be used to predict movie performance?

w Wharton Marketing Analytics



Spikes in Pre-release WOM
The King's Speech

400
|

| | | |
60 40 20 1 1

Number of §nline mentions

# 88 — The King’s Speech

1 OBER 22 2010 i
OCTO L2, ZUlU Days before movie release

And no, I haven't seen the movie yet but the trailer is so

promising and I don't think Colin can do wrong. I can’t remember
seeing him in a bad movie and lately he seems to get amazing Release date:

roles. So I for an example can't wait to see this one - I love November 26. 2010
]
myself some Colin as a king!

(c) Eliashberg, Gelper, Peres

w Wharton Marketing Analytics



Spikes in Pre-release WOM

The King's Speech

® Skyline 2
s o
O = —
= Q| ©
o 3 E 8 _
E - ) Sy
[ —
= 8 | ==
© —| o _
8 [ I 8 o —
e \ \ \ | g I \ | |
= 60 40 20 y = 60 40 20 1
Days before movie release Days before movie release

" True Grit @ Crazy Stupid Love
S S
s o -
g 8 e B

N — [(b]
@ o) B
c —
5 8 | S g |
"5 — | S Lo
o) g o
€ © | | | | E I | | |
= 60 40 20 y = 60 40 20 1

Days before movie release Days before movie release

(c) Eliashberg, Gelper, Peres
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Outline
« How to identify a spike?
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Outline
« How to identify a spike?

 Content Analysis of spikes vs non spike WOM.
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Outline
« How to identify a spike?
 Content Analysis of spikes vs non spike WOM.

 Box office prediction based on pre-release spikes

w Wharton Marketing Analytics



Spikey WOM

Rango

— Observed WOM
1 — Base level of WOM

-5 —3 M

o O O

o O O

o O O
|

900 —
. A

Pre-release WOM

2008 =
1500 —
1000 —

Spikes

>

| | | | | | |
60 50 40 30 20 10 1

Days before movie release (1)
(c) Eliashberg, Gelper, Peres
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ldentifying Spikes

2000 —
=
2 1500 -
Q :
L i
o 1000 —
o
d _ B -
5 500 W No Spike

| | E | |
May 23 June 12 July 2 July 22

Days in 2011
(c) Eliashberg, Gelper, Peres
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ldentifying Spikes

2000 —

—

&)

o

o
|

1000 —

Pre-release WOM

500 —

| | | | |
May 23 June 12 July 2 July 22

Days in 2011
(c) Eliashberg, Gelper, Peres
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Content Analysis of Spikes

« Omg | want to see Judy moody and the not so bummer
summer! #dontjudgeme

e Your Invited to a Pajama Party with Judy Moody!

e Can't wait for Judy Moody! yay! :DDD My friend and |
love you, Camryn! )

e Cant wait to go see Judy Moody on The 10th(: My little
cousins r soo excited lol((:

e Isitweird i wanna go see judy moody lol that name is so
funny to me #random

* Our site GiantHello is featured in the new Judy Moody
Movie!!!l Ya gotta check it out!

Data: 19,939 spike posts AND 12,727 non-spike posts (blogs, user- forums, Twitter)
Method: NLP

(c) Eliashberg, Gelper, Peres
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Content Analysis Aspects

e Topics — actor, director, storyline, another movie, the genre, a
trailer, reviews, and movie listing

(c) Eliashberg, Gelper, Peres
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Content Analysis Aspects

e Topics — actor, director, storyline, another movie, the genre, a
trailer, reviews, and movie listing

e Sentiment — positive, negative, neutral

(c) Eliashberg, Gelper, Peres

w Wharton Marketing Analytics



Content Analysis: Findings
o Spikes span more topics than non-spiky w-o-m.

(c) Eliashberg, Gelper, Peres
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Content Analysis: Findings
o Spikes span more topics than non-spiky w-o-m.

 They tend to be more positive than non-spiky w-o-m.

(c) Eliashberg, Gelper, Peres

w Wharton Marketing Analytics



Content Analysis: Findings
o Spikes span more topics than non-spiky w-o-m.
e They tend to be more positive than non-spiky w-o-m.

o Spikes in which people talk mainly about press events tend to
decay faster.

(c) Eliashberg, Gelper, Peres
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As Release Approaches...
 More spikes occur

(c) Eliashberg, Gelper, Peres
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As Release Approaches...
 More spikes occur

e More spike messages deal with the storyline

(c) Eliashberg, Gelper, Peres
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As Release Approaches...
 More spikes occur

e More spike messages deal with the storyline

 More spike messages are opinionated

(c) Eliashberg, Gelper, Peres

Marketing Analytics
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Regression: Box-Office with Spikes

Movie characteristics

N

log(BO;) = a+ B1MC; + Pslog(WOM;) + Bslog(SpikeCount;) + €, .

/

Movie | Volume of WOM Total # of spikes in the
# of mentions on movie | pre-release WOM

(c) Eliashberg, Gelper, Peres

wWharton Marketing Analytics



The Predictive Power of Spikes

o Estimate on 79 movies and predict BO revenues of other movies for 1-30
days before their release

(c) Eliashberg, Gelper, Peres

wWharton

o
D —
=2
w
= TTeT T Tt
© TTe- - -
L T~
< 2 - e e -
s ¥
o _|
o™
—  Model 1: Movie characteristics
o -—-- Model 2: Movie characteristics and pre-release WOM volume
-------- Model 3: Movie characteristics, pre-release WOM volume and spikes

| | I | |
25 20 15 10 5

Number of days before movie release
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Example 2: Blogs

e Enormous information about consumer sentiments
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Example 2: Blogs

e Enormous information about consumer sentiments

e Also give much information about which brands are mentioned
together

w Wharton Marketing Analytics



Creating Perceptual Maps

Audi A6 Honda Civic 252
Message #1199 Civic vs. Corolla by Aud| A6 Toyota Corolla 101
Yes DrFill, the Honda car model is sporty, .
. . Honda Civic Toyota Corolla 2762
reliable, and economical vs the Corolla - Coroll Audi A6 101
that is just reliable and economical. oyota Corolla Hal o
Ironically its Toyota that is supplying 1.8L Toyota Corolla Honda Civic 2762
turbo ... Neon to his 16 year old brother. | Network
drove it about 130 miles today. Boy does l
that put all this Civic vs. Corolla back in
perspective! The Neon is very crudely _ o Tovota
designed and built, with no low ... Audi A6 Honda Civic Co%olla
Audi A6 252 101
S Honda Civic 252 2762
edmundsﬁ
where smart car b ¥ TOyOta 101 2762 o
Uyers start = Corolla

Source: Netzer, et al. 2012, Marketing Science

w Wharton Marketing Analytics


http://townhall-talk.edmunds.com/WebX?14@@.ef3f77e/1198!keywords=allin:msgtext%20corolla%20and%20Civic

Perceptual Maps of Brands

L Subaru M|tsab|5h|
/ u i
/ Suzuki .
Mazd . \\
I - Volkswagen ‘-
.-~Porsche .. L Honda i
/// . \\\\\ Hyurldal ‘I
Nissan " Kia ;
o - -
/,Agd' Acura N !
/' . \\ \\‘ /
) S Toyota
; Volvo \ -
! BMW | \ e -
[ \ T
| Infiniti ': --~"""Dodge -
| I Saab | LT .g h
: a: | Saturn
'| Mercedes-Benz : - \
. ] ; Ford :
‘~. Lexus P u |
\ . ,’ ,/// Cheer|Et :
\\ I’I // . ,"
\ Jaguar i ”
. -] 2 /
' ,,// Mercuw /
\ a u Pontiac s
\\ - //I . ,/
Cadillac” g
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Empirical Lessons

e Enormous information about consumer sentiments
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Empirical Lessons

e Enormous information about consumer sentiments

 Unstructured
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Empirical Lessons
e Enormous information about consumer sentiments
e Unstructured

o (Careful thought must be undertaken how to use such data to
derive guantitative measures from such data

w Wharton Marketing Analytics
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Viral Marketing
 Two Assumptions
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Viral Marketing

e Two Assumptions
e Customers influence each other (contagion is at work)
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Viral Marketing

e Two Assumptions

e Customers influence each other (contagion is at work)
 There are key opinion leaders and firms are able to identify

w Wharton Marketing Analytics



Social Networks
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Typical Questions
 What firms want to know
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Typical Questions
* What firms want to know
 Who are the opinion leaders?
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Typical Questions
 What firms want to know

 Who are the opinion leaders?
* |s there value in knowing the network structure?
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Typical Questions
 What firms want to know

 Who are the opinion leaders?
* |s there value in knowing the network structure?
 Is there actually social influence among customers?

w Wharton Marketing Analytics



Opinion Leaders & Contagion: Some Insights
e Setting and objectives
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Opinion Leaders & Contagion: Some Insights
e Setting and objectives

e Data
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Opinion Leaders & Contagion: Some Insights
e Setting and objectives

e Data

* Findings
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Opinion Leaders & Contagion: Some Insights
e Setting and objectives

 Data
* Findings

 What did the firm learn it did not already know?

w Wharton Marketing Analytics



Wharton

UNIVERSITY 0 f PENNSYLVANIA

ONLINE

Market Segmentation, Social Media,
and Viral Marketing

Viral Marketing: Pharmaceutical Example- Collecting Data



Setting and Objectives
e Setting
 Pharmaceutical industry
 New prescription drug

* Quite different than current two drugs in therapeutic class
* Prevalence related to ethnicity

w Wharton Marketing Analytics



Setting and Objectives
e Setting
 Pharmaceutical industry
 New prescription drug

* Quite different than current two drugs in therapeutic class
* Prevalence related to ethnicity

* What the firm wanted to know
 |Is there actually contagion?
 Who are the opinion leaders?
* Is there value in knowing the network structure?
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How to Identify Influentials

Traditional Methods

Segmentation; Existing
Relationships
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How to Identify Influentials

Traditional Methods

Segmentation; Existing
Relationships

Formal Leadership

Academic Appointments
Prof. Society Leaders
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How to Identify Influentials

Traditional Methods

Segmentation; Existing
Relationships

Formal Leadership

Academic Appointments
Prof. Society\Leaders

Academics
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How to Identify Influentials

Traditional Methods

Segmentation; Existing
Relationships

Academics
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Data
* Physicians
* In three cities with sizable Asian population
* Who prescribed in therapeutic class
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* In three cities with sizable Asian population
* Who prescribed in therapeutic class

* Physician-level prescription data
e 17 months, starting with time of launch
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Data
* Physicians
* In three cities with sizable Asian population
* Who prescribed in therapeutic class

* Physician-level prescription data
e 17 months, starting with time of launch

* Physician-level detailing data
e 17 months, starting with time of launch
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Data
e Sociometric Survey

 “List colleagues with whom you feel comfortable discussing
the clinical management and treatment of disease XXX”

Discussion Network among Doctors
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Data
e Sociometric Survey

 “List colleagues with whom you feel comfortable discussing
the clinical management and treatment of disease XXX”

Discussion Network among Doctors

« “To whom do you typically refer patients with disease XXX?”

Referral Network among Doctors
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Data
Opinion Leadership Scale (self-reported)

(PLEASE CIRCLE THE APPROPRIATE NUMBER ON THE SCALE)

1. In general, do you talk to other doctors about XXX?
Newver Very Often
1 2 3 4 5 6 7

2. When you talk to your colleagues about XXX do you:

Offer very little Offer a great deal
information of information
1 2 3 4 5 6 7

3. During the past 6 months, how many physicians have you instructed about ways to
treat XXX:

Instructed Instructed multiple
no one physicians
1 2 3 4 5 6 7
4. Compared to your circle of colleagues, how likely are you to be asked about ways to
treat XXX:
Not at all likely Very likely
to be asked to be asked
1 2 3 4 5 6 7

5. In discussions of XXX, which of the following happens most often?

Your colleagues tell You tell your colleagues
you about treatments about treatments
1 2 3 4 5 6 7

6. In general, when you think about your professional interactions with colleagues, are
you:

Not used as a
source of advice
1 2 3 4 5

Often used as a
source of advice
6 7

Marketing Analytics



Data

 Huge Amount of Data

e Atypical problem is thinking about a framework of putting
It together
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Data

 Huge Amount of Data

e Atypical problem is thinking about a framework of putting
It together

e Adriving force should be careful thought about what
guestions are relevant for which stakeholders
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Data

 Huge Amount of Data

e Atypical problem is thinking about a framework of putting
It together

e Adriving force should be careful thought about what
guestions are relevant for which stakeholders

 Considering the questions can help in understanding what
“data cut” will be necessary
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Sociometric Results for One Citv3
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Value in Knowing Network Structure?
 Unexpected leaders

* Not all opinion leaders stand on a soap box
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Value in Knowing Network Structure?
 Unexpected leaders

* Not all opinion leaders stand on a soap box
 Inefficient overlap in contacts

« Especially among top leaders known to company
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Value in Knowing Network Structure?
 Unexpected leaders

* Not all opinion leaders stand on a soap box
 Inefficient overlap in contacts

« Especially among top leaders known to company
 Insufficient coverage by top leaders

* Esp. salient in this case since division along ethnic lines
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New Drug Diffusion Through Network
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Why a Statistical Model
e Drug adoption pattern could be due to:

e Sales force
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Why a Statistical Model
e Drug adoption pattern could be due to:

e Sales force

o Overall diffusion In the city (everyone becomes more
aware)
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Why a Statistical Model
e Drug adoption pattern could be due to:

e Sales force

o Overall diffusion In the city (everyone becomes more
aware)

* Physician demographics
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Why a Statistical Model
e Drug adoption pattern could be due to:

e Sales force

o Overall diffusion In the city (everyone becomes more
aware)

* Physician demographics
o Other market level changes
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Regression Model
 Dependent Variable

 Whether a physician adopted the drug or not
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Regression Model
 Dependent Variable

 Whether a physician adopted the drug or not

* Independent Variables
* Marketing activity
 Time Trends
 Demographics
o Social Pressure captured via social networks
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Discussion
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Discussion

Referral

W Wharton Marketing Analytics



Discussion

Referral

—_————>

No Link
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Discussion

Referral
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No Link
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Is There Actually Contagion?
e Yes, even after controlling for
e Sales force
* Physician demographics
* Month effects (to account for market level changes)
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Is There Actually Contagion?
e Yes, even after controlling for
e Sales force
* Physician demographics
* Month effects (to account for market level changes)

« Big implications for whether firms should a strategy that
emphasizes Word of Mouth marketing
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Customer Heterogeneity

Physicians with high network centrality look towards others for
Information

“True” leaders are happy to take information from others
when they find it necessary
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Customer Heterogeneity

Physicians with high network centrality look towards others for
Information

“True” leaders are happy to take information from others
when they find it necessary

Self-reported opinion leaders are less susceptible to social
Influence

Physicians who thought of themselves as leaders were
less likely to reach out to others
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Empirical Lessons
e You cannot take social influence for granted

e Every situation should be carefully looked at
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e Every situation should be carefully looked at

* It can be difficult to identify the true opinion leaders a priori
without actually measuring network(s)

w Wharton Marketing Analytics



Empirical Lessons
e You cannot take social influence for granted

e Every situation should be carefully looked at

* It can be difficult to identify the true opinion leaders a priori
without actually measuring network(s)

* But the costs of doing so can be prohibitive, unless you

 Use archival data, or
 Have a very high margin product
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